Enabling On-the-fly Storage Format Prediction and Optimization for SpMV

Weijie Zhou, Xipeng Shen CSC, North Carolina State University

Sparse Matrix Multiplication

 Sparse matrix vector multiplication (SpMV) -- core of many HPC applications.

Scientific applications, e.g, PDE, solvers

Large scale graph algorithm, e.g., PageRank

SpMV: y = Ax

SpMV:
$$y = Ax$$

```
ptr = 0 2 4 7

CSR cols = 0 1 1 2 0 2 3 1 3

data = 1 5 2 6 8 3 7 9 4
```

```
for(i = 0; i < m; ++i) {
  for(j = ptr[i]; j < ptr[i+1]; ++j) {
    y[i] += data[j] * x[cols[j]];
  }
}</pre>
```


SpMV:
$$y = Ax$$

```
offsets = \begin{bmatrix} -2 & 0 \\ 0 & 1 & 2 \end{bmatrix}
```


SpMV: y = Ax

Storage formats

CSR

COO

```
offsets = -2 0 1

data = 0 0 8 9
1 2 3 4
```

• • •

Format Selection for SpMV

- Formats may give significant different performance
- How to select the best format for a given matrix?

Previous work

- Jiajia Li+:PLDI '13, decision tree
- N. Sedaghati+:ICS'15, decision tree
- A. Benatia+:ICPP,16, SVM
- B. Yilmaz+:TACO'16, decision tree

Limitations: accuracy, manual feature design, ...

Our Inspiration

• Treat matrix as an image, use *image recognition* methods for selection.

Our Contributions

- Bridging the gap between deep learning and format selection
- Three key questions
 - How to represent sparse matrices for DNN?
 - What deep learning structure to use?
 - How to address the architecture sensitivity?

Collecting Labels For Training

Run SpMV on the combination of matrix and format

Label = *argmax* Performance(format)

Special Challenge I

• Input representation: fixed size required

Special Challenge I

Method in image processing: Image scaling

Proposal I: Augmented with Density Matrix

Binary matrix

Density matrix

Proposal II: Distance histogram

- Dist. hist. between nonzeros and the diagonal
- Two representations: row-wise, col-wise

Special Challenge II

CNN structure design

Special Challenge III

- Architecture Sensitivity
 - Best formats for a matrix differ across machines
 - Model cannot be reused across machines

Transfer Learning

- An idea in ML for cross-domain model migration
 - Mostly across datasets in the domains
 - Train a model on one dataset in domain A
 - Refine the model on datasets in domain B
- Questions w.r.t the architecture sensitivity problem
 - How to effectively apply it?
 - How much help can it bring?

Evaluation -- Setup

- Dataset (9200 matrices)
 - The SuiteSparse Matrix Collection (2757 matrices)
 - Derived 6443 matrices
- 5-fold cross validation is used
- Evaluated formats
 - CSR, COO, ELL, HYB, BSR, CSR5
- Three platforms
 - Intel Xeon E5, AMD A8, Nvidia Titan X GPU

Speedup (Intel CPU)

Baseline: SMAT [PLDI'13]

Average 1.73X over SMAT; 2.23X over all-CSR (max 15X)

CNN Structure Impact

Early Merging vs Late Merging

Transfer Learning

From Intel Xeon E5 to AMD Radeon A8

Discussion on Overhead

- Prediction and conversion overhead not considered
 - Focused on cases where SpMV runs repeatedly on a matrix for many times
- For other cases
 - Conversion overhead can outweigh the benefit or new format

Impact of Conversion Time

- The conversion can be 50X of a SpMV operation
- Conversion overhead can outweigh the benefit of new format
- an overheadconscious prediction model

Conversion time matters

Solution: Two-Stage Lazy-and-Light Scheme

Summary: Overall speedup of applications: 1.14X to 1.43X vs. 0.82X to 1.24X upper-bound with overhead-oblivious

Final Takeaways

- Deep learning is effective for SpMV format selection
 - Important to treat the special challenges
- One step to relate deep learning with prog. optimizations
- Many potential uses to explore
- Considering conversion time is essential for sparse matrix format selection

Publication

- [PPoPP'18] Bridging the Gap between Deep Learning and Sparse Matrix Format Selection
- [IPDPS'18] Overhead-Conscious Format Selection for SpMV-Based Applications
- [TPDS submitted] Enabling Runtime SpMV Format Selection through an Overhead Conscious Method

Q&A